Skip to content Skip to sidebar Skip to footer

Google Researchers Introduce LightLab: A Diffusion-Based AI Method for Physically Plausible, Fine-Grained Light Control in Single Images

Manipulating lighting conditions in images post-capture is challenging. Traditional approaches rely on 3D graphics methods that reconstruct scene geometry and properties from multiple captures before simulating new lighting using physical illumination models. Though these techniques provide explicit control over light sources, recovering accurate 3D models from single images remains a problem that frequently results in…

Read More

NVIDIA Releases Cosmos-Reason1: A Suite of AI Models Advancing Physical Common Sense and Embodied Reasoning in Real-World Environments

AI has advanced in language processing, mathematics, and code generation, but extending these capabilities to physical environments remains challenging. Physical AI seeks to close this gap by developing systems that perceive, understand, and act in dynamic, real-world settings. Unlike conventional AI that processes text or symbols, Physical AI engages with sensory inputs, especially video, and…

Read More

Google’s AlphaEvolve Is Evolving New Algorithms — And It Could Be a Game Changer

AlphaEvolve imagined as a genetic algorithm coupled to a large language model. Picture created by the author using various tools including Dall-E3 via ChatGPT. Large Language Models have undeniably revolutionized how many of us approach coding, but they’re often more like a super-powered intern than a seasoned architect. Errors, bugs and hallucinations happen all the time,…

Read More

Multimodal LLMs Without Compromise: Researchers from UCLA, UW–Madison, and Adobe Introduce X-Fusion to Add Vision to Frozen Language Models Without Losing Language Capabilities

LLMs have made significant strides in language-related tasks such as conversational AI, reasoning, and code generation. However, human communication extends beyond text, often incorporating visual elements to enhance understanding. To create a truly versatile AI, models need the ability to process and generate text and visual information simultaneously. Training such unified vision-language models from scratch…

Read More

Subject-Driven Image Evaluation Gets Simpler: Google Researchers Introduce REFVNLI to Jointly Score Textual Alignment and Subject Consistency Without Costly APIs

Text-to-image (T2I) generation has evolved to include subject-driven approaches, which enhance standard T2I models by incorporating reference images alongside text prompts. This advancement allows for more precise subject representation in generated images. Despite the promising applications, subject-driven T2I generation faces a significant challenge of lacking reliable automatic evaluation methods. Current metrics focus either on text-prompt…

Read More